Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method.
نویسندگان
چکیده
Bacterial adhesion onto solid surfaces is of importance in a wide spectrum of problems, including environmental microbiology, biomedical research, and various industrial applications. Despite many research efforts, present thermodynamic models that rely on the evaluation of the adhesion energy are often elusive in predicting the bacterial adhesion behavior. Here, we developed a new spectrophotometric method to determine the surface free energy (SFE) of bacterial cells. The adhesion behaviors of five bacterial species, Pseudomonas putida KT2440, Salmonella Typhimurium ATCC 14028, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 29212, and Escherichia coli DH5α, onto two model substratum surfaces, i.e., clean glass and silanized glass surfaces, were studied. We found that bacterial adhesion was unambiguously mediated by the SFE difference between the bacterial cells and the solid substratum. The lower the SFE difference, the higher degree of bacterial adhesion. We therefore propose the use of the SFE difference as an accurate and simple thermodynamic measure for quantitatively predicting bacterial adhesion. The methodological advance and thermodynamic simplification in the paper have implications in controlling bacterial adhesion and biofilm formation on solid surfaces.
منابع مشابه
Application of SCB Test and Surface Free Energy Method in Evaluating Crack Resistance of SBS Modified Asphalt Mixes
Cohesion properties of the binder matrix within asphalt mixes and adhesion characteristics of the asphalt binder and aggregate particles are the two major mechanisms resisting against cracking in asphalt mixes. This study is focused on estimating crack resistance of asphalt mixes at intermediate temperatures through evaluation of cohesion and adhesion properties of binder-aggregate systems usin...
متن کاملاصلاح سطح ابرآبگریز پلیمر پلیپروپیلن با هدف بهبود برهمکنشهای بیولوژیک
The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS) . Here, we pr...
متن کاملSurface Thermodynamics and Extended DLVO Theory of Acidithiobacillus ferrooxidans Cells Adhesion on Pyrite and Chalcopyrite
The adhesion of Acidithiobacillus ferrooxidans bacterial cells have been assessed by following the thermodynamic and extended DLVO theoretical approaches. Surface potential, interfacial tension and contact angle parameters that are necessary for the calculation of free energy of adhesion have been determined experimentally. The Hamaker constant involved in the Lifshitz-van der Waals interaction...
متن کاملاصلاح ابرآبدوست و آنتی باکتریال پلیمر پلیاورتان بهکمک نانوذرات دیاکسید تیتانیوم بهمنظور استفاده در ابزار پزشکی
Polyurethane polymer plays an important role in health care, and it is widely used in medical devices and instruments. However, the low biocompatibility and biofilm formation on the surface can be regarded as a challenging issue. Engineering the wetting capability of the surface is an effective way to increase the biodegradability of polymer surfaces with sufficient bulk properties. In this stu...
متن کاملIn Vitro Effects of Four Porcelain Surface Treatment Methods on Adhesion of Lactobacilli Acidophilus
Objective: Adhesion of Lactobacillus acidophilus (L. acidophilus) to dental porcelain surface may lead to gingival inflammation and secondary caries. Surface roughness is among the factors affecting this adhesion. The purpose of this study was to evaluate the effects of four different surface treatment methods on adhesion of L. acidophilus to dental porcelain. Methods: Sixty specimens (3x10...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 49 10 شماره
صفحات -
تاریخ انتشار 2015